The Cased Telescoped Guided Projectile

By David Leishman

The Problem With Conventional Ammo

- Increased stand off Ranges (2 to 4km)
 - Conventional 'Dumb' bullets P(hit)
 decreases rapidly as range increases.
 - The engagement time increases and fire control predictions are less accurate.

How Can we Improve This?

- Three Main Factors can Improve the Chance of Success
 - Increase Size of Target Area
 - Improve Accuracy of Target Path Prediction
 - Make P(h) Independant of Range to Target

Solution

We will focus on making P(h) Independant of Range

-Combining both Starstreak technology with the Cased Telescoped Weapon System.

- Fired from Light Armored Vehicles fitted with CTWS.

- Increasing efficiency of weapon load reducing logistic load. Easy to handle and store.

Short Range Air Defence Missile System THALES Man portable or Vehicle mounted

CTGP - The Concept

- Guided dart Projectile adapted from CT Munition
- Uses Starstreak guidance and flight control technology
- Projectile optimised for aerodynamic requirements

CTGP CONCEPT

The Cased Telescoped Weapon System

Rate of fire 200 shots per minute

CTWS Selected for both SIKA & Lancer Demonstrators on the TRACER/SCOUT Programme

INTERNATIONAL

CT cartridge allows simplified feeder system & general storage

Areas of Technical Difficulty

Fitting the CTGP into the space available in a current 40mm CTWS.

- Need to Fold fins
- Must Achieve Stable Launch Conditions
- Protect components from heat & Gases

Moving from Missile to Gun Launch

- Strength of design Must withstand about 30,000 g on initial firing
- Certain Components are not Transferable

Projectile Design

Iteration 1 design:

- 4 rear fins deploy upon sabot release
- 2 canards ready deployed in sabot
- Extended sabot to protect components

Studies Completed

- Study 1 April 1999
 - CTGP as a solution to an advanced aircraft cannon requirement
- Study 2 September 1999
 - CTGP proposed as solution for US Enhanced Accuracy Medium Calibre Weapon System for Future Combat Vehicle (FCV)
- Study 3 October 2000
 - Folded fin prototype, first gun launch, discarding sabot

Study 1 - Conclusions

From the initial study:

- The CTGP concept is Operationally Viable
- The Maturity of both Starstreak & CTWS Systems reduces development Risk
- Offers a step change in mission effectiveness
 - Improved hit probability
 - Increased Window Of Opportunity
 - Reduced pilot workload
- Risks identified:
 - Fin Deployment
 - Launch survivability
 - System Integration

Study 2 - Conclusions

- The CTGP would produce a step change in effectiveness for a Land-based System
- CTGP would provide various roles:
 - Offensive Weapon System
 - Self Defence
 - Force Protection
- Effective target set:
 - UAV, UCAV
 - Fixed Wing Aircraft
 - Attack Helicopter
 - Cruise Missiles
 - ATGM
 - Artillery Rockets

- The projectile could be fired from the CTWS
- The sabot discards correctly
- Fins would deploy on exiting the barrel
- Stable launch of projectile is achieved

Feasibility Studies - Conclusions

- CTGP launched from the CTWS is technically feasible
 - Firing from CTWS, Fins deploying, stable launch demonstrated
- Offers a step change in mission effectiveness
 - Improved hit probability
 - Improved stowed kill ratio
- Areas of greatest risk identified:
 - Gun Launch Survivability of Guidance Electronics
 - Systems Integration (Fire Control System, Sensors)

Next Step

Future Developments

Continued Risk Reduction

- Optimise projectile design
- Produceability (Manufacturing cost)

Technical Demonstrator Programme

- Develop solid state guidance (select polarised laser field or Radar Information Field)
- Platform Fire Control System / Sensor integration

Operational Effectiveness Studies

Air, Land, Sea Applications,

End of Presentation

